Classification—A Two-Step Process

Step 1 - Model construction

- describe a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is the training set
 - The model is represented as classification rules, decision trees, or mathematical formulae

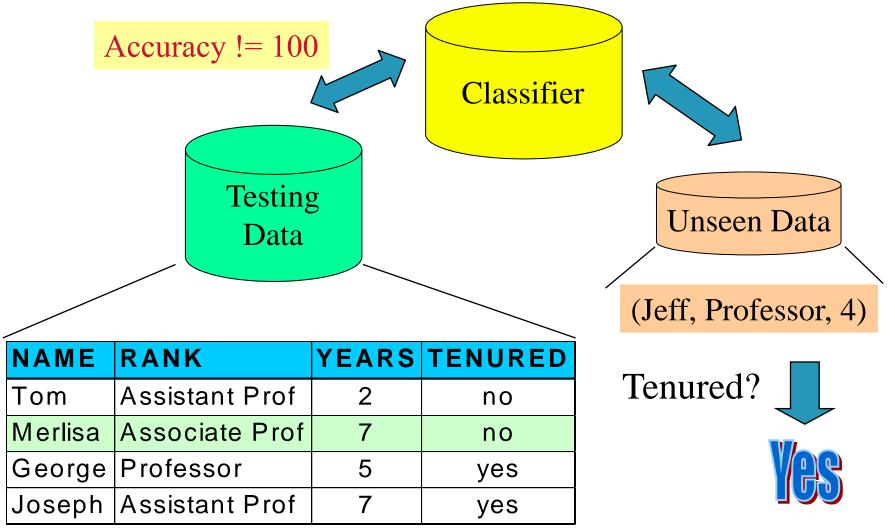
• Step 2 - Model usage

- Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set
- Use model to classify future or unknown objects

Classification Process (1): Model Construction

Training Data			Classification Algorithms	
NAME	RANK	YEARS	TENURED	Classifier
Mike	Assistant Prof	3	no	(Model)
Mary	Assistant Prof	7	yes	
Bill	Professor	2	yes	
Jim	Associate Prof	7	yes	IF rank = 'professor'
Dave	Assistant Prof	6	no	*
Anne	Associate Prof	3	no	OR years > 6 THEN tenured = 'yes'

Classification Process (2): Use the Model in Prediction



Classification by Decision Tree Induction

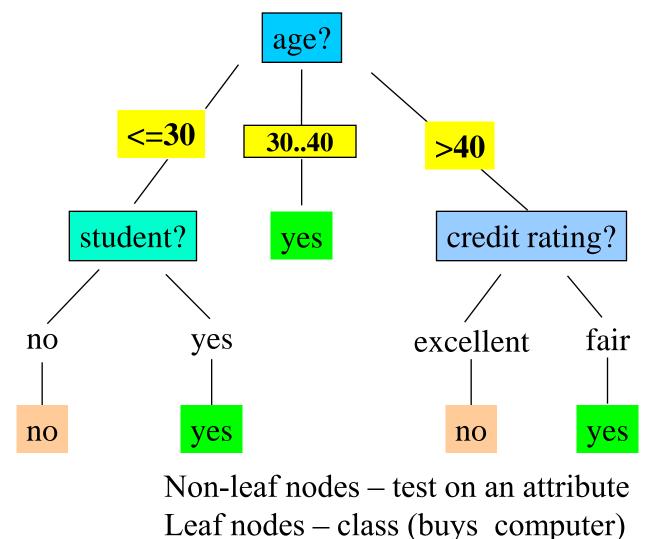
Decision tree

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Training Dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example: A Decision Tree for "buys_computer"



Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Algorithm for Decision Tree Induction (continued)

- Basic algorithm (generate_decision_tree)
 - Create a node N
 - If *samples* are all of the same class, C then
 - Return N as a leaf node labeled with the class C
 - If attribute-list is empty then
 - Return N as a leaf node labeled with most common class in *sample*
 - Select test-attribute, the attribute with highest info gain from *attribute-list*
 - Label node N with *test-attribute*
 - For each known value a_i of *test-attribute*
 - Grow a branch from node N for the condition *test-attribute*=a_i
 - Let s_i be the set of samples in *samples* for which *test-attribute*=a_i
 - If s_i is empty then
 - Attach a leaf labeled with the most common class in *samples*
 - Else attach the node returned by generate_decision_tree(s_i, attribute-list)

Information Gain (attribute selection measure)

- Select the attribute with the highest information gain
- Assume there are two classes, *P* and *N*
 - Let the set of examples *S* contain *p* elements of class *P* and *n* elements of class *N*
 - The amount of information , needed to decide if an arbitrary example in *S* belongs to *P* or *N* is defined as or expected information to classify a tuple:-

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Information Gain in Decision Tree Induction

- Assume that using attribute A, a set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$
 - If S_i contains p_i examples of P and n_i examples of N, the entropy, or the expected information needed to classify objects in all sub-trees S_i is

• The encoding information that would be gained by branching on A $E(A) = \sum_{i=1}^{n} \frac{p_i + n_i}{p + n} I(p_i, n_i)$

$$Gain(A) = I(p, n) - E(A)$$

Attribute Selection by Information Gain Computation

Class P: buys_computer = "yes"
Class N: buys_computer = "no"
I(p, n) = I(9, 5) =0.940

Compute the entropy for *age*:

$E(age) = \frac{5}{14}I(2,3) + \frac{5}{14}I(2,$	$-\frac{4}{14}I(4,0)$
$+\frac{5}{14}I(3,2)=$	= 0.69

Hence

$$Gain(age) = I(p,n) - E(age)$$
$$= .25$$

age	pi	n _i	l(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

Similarly

Gain(income) = 0.029 Gain(student) = 0.151 $Gain(credit_rating) = 0.048$

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

IF age = "<=30" AND student = "no" THEN buys_computer = "no" IF age = "<=30" AND student = "yes" THEN buys_computer = "yes" IF age = "31...40" THEN buys_computer = "yes" IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "yes" IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "no"

Bayesian Classification: Why?

- <u>Probabilistic learning</u>: Calculate explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Prior knowledge can be combined with observed data.
- <u>Probabilistic prediction</u>: Predict multiple hypotheses, weighted by their probabilities
- <u>Standard</u>: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Play-tennis example: estimating $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	Ν
sunny	hot	high	true	Ν
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	Ν
overcast	cool	normal	true	Р
sunny	mild	high	false	Ν
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	Ν

2 classes – p (play), n (don't play)

P(p) = 9/14 P(n) = 5/14

outlook	g P(x _i C)
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
$P(cool \mid p) = 3/9$	$P(cool \mid n) = 1/5$
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 2/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

ASSIGNMENT

- KDD For Insurance Risk Assessment: A Case Study
- ✓ Decision tree techniques to identify significant areas of risk within an insurance portfolio.
- ✓ The real world dataset used contains information about policies and insurance claims on those policies.
- ✓ Historical data is used to estimate parameters of the model