
Classification—A Two-Step Process  

• Step 1 - Model construction 
•  describe a set of predetermined classes 

• Each tuple/sample is assumed to belong to a predefined class, as 
determined by the class label attribute 

• The set of tuples used for model construction is the training set 

• The model is represented as classification rules, decision trees, or 
mathematical formulae 

• Step 2 - Model usage 
• Estimate accuracy of the model 

• The known label of test sample is compared with the classified result from the model 

• Accuracy rate is the percentage of test set samples that are correctly classified by the model 

• Test set is independent of training set 

• Use model to classify future or unknown objects 



Classification Process (1): Model 
Construction 

Training 

Data 

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification 

Algorithms 

IF rank = ‘professor’ 

OR years > 6 

THEN tenured = ‘yes’  

Classifier 

(Model) 



Classification Process (2): Use the 
Model in Prediction 

Classifier 

Testing 

Data 

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data 

(Jeff, Professor, 4) 

Tenured? 

Accuracy != 100 



Classification by Decision Tree Induction 

• Decision tree  
• A flow-chart-like tree structure 

• Internal node denotes a test on an attribute 

• Branch represents an outcome of the test 

• Leaf nodes represent class labels or class distribution 

• Decision tree generation consists of two phases 
• Tree construction 

• At start, all the training examples are at the root 

• Partition examples recursively based on selected attributes 

• Tree pruning 
• Identify and remove branches that reflect noise or outliers 

• Use of decision tree: Classifying an unknown sample 
• Test the attribute values of the sample against the decision tree 



Training Dataset 

age income student credit_rating 

<=30 high no fair 

<=30 high no excellent 

31…40 high no fair 

>40 medium no fair 

>40 low yes fair 

>40 low yes excellent 

31…40 low yes excellent 

<=30 medium no fair 

<=30 low yes fair 

>40 medium yes fair 

<=30 medium yes excellent 

31…40 medium no excellent 

31…40 high yes fair 

>40 medium no excellent 

buys_computer 

no 

no 

no 

yes 

yes 

yes 

yes 

no 

no 

yes 
yes 
yes 
yes 

yes 



Example: A Decision Tree for 
“buys_computer” 

age? 

overcast 

student? credit rating? 

no yes fair excellent 

<=30 >40 

no no yes yes 

yes 

30..40 

Non-leaf nodes – test on an attribute 

Leaf nodes – class (buys_computer) 



Algorithm for Decision Tree Induction 

• Basic algorithm (a greedy algorithm) 

• Tree is constructed in a top-down recursive divide-and-conquer manner 

• At start, all the training examples are at the root 

• Attributes are categorical (if continuous-valued, they are discretized in advance) 

• Examples are partitioned recursively based on selected attributes 

• Test attributes are selected on the basis of a heuristic or statistical measure (e.g., 
information gain) 

• Conditions for stopping partitioning 

• All samples for a given node belong to the same class 

• There are no remaining attributes for further partitioning – majority voting is 
employed for classifying the leaf 

• There are no samples left 



Algorithm for Decision Tree Induction 
(continued) 

• Basic algorithm (generate_decision_tree) 

• Create a node N 

• If samples are all of the same class, C then 

• Return N as a leaf node labeled with the class C 

• If attribute-list is empty then 

• Return N as a leaf node labeled with most common class in sample 

• Select test-attribute, the attribute with highest info gain from attribute-list 

• Label node N with test-attribute 

• For each known value ai of test-attribute 

• Grow a branch from node N for the condition test-attribute=ai 

• Let si be the set of samples in samples for which test-attribute=ai   

• If si is empty then 

• Attach a leaf labeled with the most common class in samples  

• Else attach the node returned by generate_decision_tree(si, attribute-list) 



Information Gain (attribute selection 
measure) 

• Select the attribute with the highest information gain 

• Assume there are two classes, P  and N 

• Let the set of examples S contain p elements of class P  and n elements of 

class N 

• The amount of information , needed to decide if an arbitrary example in S 

belongs to P  or N is defined as or expected information to classify a tuple:- 
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Information Gain in Decision Tree 
Induction 

• Assume that using attribute A, a set S will be partitioned into sets {S1, 

S2 , …, Sv}   

• If Si contains pi examples of P and ni examples of N, the entropy, or the 

expected information needed to classify objects in all sub-trees Si is 

 

 

• The encoding information that would be gained by branching on A 
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Attribute Selection by Information Gain 
Computation 

Class P: buys_computer = “yes” 

Class N: buys_computer = “no” 

I(p, n) = I(9, 5) =0.940 

Compute the entropy for age: 

 

 

 

 

 

 

 

 

 

Hence 

 

 

 

Similarly age pi ni I(pi, ni)

<=30 2 3 0.971

30…40 4 0 0

>40 3 2 0.971

69.0)2,3(
14

5

)0,4(
14

4
)3,2(

14

5
)(





I

IIageE

048.0)_(

151.0)(

029.0)(







ratingcreditGain

studentGain

incomeGain

)(),()( ageEnpIageGain 
= .25 



Extracting Classification Rules from 
Trees 

• Represent the knowledge in the form of IF-THEN rules 

• One rule is created for each path from the root to a leaf 

• Each attribute-value pair along a path forms a conjunction 

• The leaf node holds the class prediction 

• Rules are easier for humans to understand 

• Example 
IF age = “<=30” AND student = “no”   THEN buys_computer = “no” 

IF age = “<=30” AND student = “yes”  THEN buys_computer = “yes” 

IF age = “31…40”    THEN buys_computer = “yes” 

IF age = “>40”   AND credit_rating = “excellent”   THEN buys_computer = “yes” 

IF age = “>40” AND credit_rating = “fair”  THEN buys_computer = “no” 



Bayesian Classification: Why? 

• Probabilistic learning:  Calculate explicit probabilities for 
hypothesis, among the most practical approaches to certain types 
of learning problems 

• Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is correct.  
Prior knowledge can be combined with observed data. 

• Probabilistic prediction:  Predict multiple hypotheses, weighted by 
their probabilities 

• Standard: Even when Bayesian methods are computationally 
intractable, they can provide a standard of optimal decision making 
against which other methods can be measured 



Play-tennis example: estimating P(xi|C) 

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

outlook 

P(sunny|p) = 2/9 P(sunny|n) = 3/5 

P(overcast|p) = 4/9 P(overcast|n) = 0 

P(rain|p) = 3/9 P(rain|n) = 2/5 

temperature 

P(hot|p) = 2/9 P(hot|n) = 2/5 

P(mild|p) = 4/9 P(mild|n) = 2/5 

P(cool|p) = 3/9 P(cool|n) = 1/5 

humidity 

P(high|p) = 3/9 P(high|n) = 4/5 

P(normal|p) = 6/9 P(normal|n) = 2/5 

windy 

P(true|p) = 3/9 P(true|n) = 3/5 

P(false|p) = 6/9 P(false|n) = 2/5 

P(p) = 9/14 

P(n) = 5/14 

2 classes – p (play), 

 n (don’t play) 



ASSIGNMENT 

• KDD For Insurance Risk Assessment: A Case Study 

Decision tree techniques to identify significant areas of risk within an 
insurance portfolio.  

The real world dataset used contains information about policies and 
insurance claims on those policies. 

Historical data is used to estimate parameters of the model 


