
Classification—A Two-Step Process

• Step 1 - Model construction
• describe a set of predetermined classes

• Each tuple/sample is assumed to belong to a predefined class, as
determined by the class label attribute

• The set of tuples used for model construction is the training set

• The model is represented as classification rules, decision trees, or
mathematical formulae

• Step 2 - Model usage
• Estimate accuracy of the model

• The known label of test sample is compared with the classified result from the model

• Accuracy rate is the percentage of test set samples that are correctly classified by the model

• Test set is independent of training set

• Use model to classify future or unknown objects

Classification Process (1): Model
Construction

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’

Classifier

(Model)

Classification Process (2): Use the
Model in Prediction

Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

Accuracy != 100

Classification by Decision Tree Induction

• Decision tree
• A flow-chart-like tree structure

• Internal node denotes a test on an attribute

• Branch represents an outcome of the test

• Leaf nodes represent class labels or class distribution

• Decision tree generation consists of two phases
• Tree construction

• At start, all the training examples are at the root

• Partition examples recursively based on selected attributes

• Tree pruning
• Identify and remove branches that reflect noise or outliers

• Use of decision tree: Classifying an unknown sample
• Test the attribute values of the sample against the decision tree

Training Dataset

age income student credit_rating

<=30 high no fair

<=30 high no excellent

31…40 high no fair

>40 medium no fair

>40 low yes fair

>40 low yes excellent

31…40 low yes excellent

<=30 medium no fair

<=30 low yes fair

>40 medium yes fair

<=30 medium yes excellent

31…40 medium no excellent

31…40 high yes fair

>40 medium no excellent

buys_computer

no

no

no

yes

yes

yes

yes

no

no

yes
yes
yes
yes

yes

Example: A Decision Tree for
“buys_computer”

age?

overcast

student? credit rating?

no yes fair excellent

<=30 >40

no no yes yes

yes

30..40

Non-leaf nodes – test on an attribute

Leaf nodes – class (buys_computer)

Algorithm for Decision Tree Induction

• Basic algorithm (a greedy algorithm)

• Tree is constructed in a top-down recursive divide-and-conquer manner

• At start, all the training examples are at the root

• Attributes are categorical (if continuous-valued, they are discretized in advance)

• Examples are partitioned recursively based on selected attributes

• Test attributes are selected on the basis of a heuristic or statistical measure (e.g.,
information gain)

• Conditions for stopping partitioning

• All samples for a given node belong to the same class

• There are no remaining attributes for further partitioning – majority voting is
employed for classifying the leaf

• There are no samples left

Algorithm for Decision Tree Induction
(continued)

• Basic algorithm (generate_decision_tree)

• Create a node N

• If samples are all of the same class, C then

• Return N as a leaf node labeled with the class C

• If attribute-list is empty then

• Return N as a leaf node labeled with most common class in sample

• Select test-attribute, the attribute with highest info gain from attribute-list

• Label node N with test-attribute

• For each known value ai of test-attribute

• Grow a branch from node N for the condition test-attribute=ai

• Let si be the set of samples in samples for which test-attribute=ai

• If si is empty then

• Attach a leaf labeled with the most common class in samples

• Else attach the node returned by generate_decision_tree(si, attribute-list)

Information Gain (attribute selection
measure)

• Select the attribute with the highest information gain

• Assume there are two classes, P and N

• Let the set of examples S contain p elements of class P and n elements of

class N

• The amount of information , needed to decide if an arbitrary example in S

belongs to P or N is defined as or expected information to classify a tuple:-

np

n

np

n

np

p

np

p
npI





 22 loglog),(

Information Gain in Decision Tree
Induction

• Assume that using attribute A, a set S will be partitioned into sets {S1,

S2 , …, Sv}

• If Si contains pi examples of P and ni examples of N, the entropy, or the

expected information needed to classify objects in all sub-trees Si is

• The encoding information that would be gained by branching on A

 
 




n

1

) , () (
i

i i
i i n p I

n p

n p
A E

)(),()(AEnpIAGain 

Attribute Selection by Information Gain
Computation

Class P: buys_computer = “yes”

Class N: buys_computer = “no”

I(p, n) = I(9, 5) =0.940

Compute the entropy for age:

Hence

Similarly age pi ni I(pi, ni)

<=30 2 3 0.971

30…40 4 0 0

>40 3 2 0.971

69.0)2,3(
14

5

)0,4(
14

4
)3,2(

14

5
)(





I

IIageE

048.0)_(

151.0)(

029.0)(







ratingcreditGain

studentGain

incomeGain

)(),()(ageEnpIageGain 
= .25

Extracting Classification Rules from
Trees

• Represent the knowledge in the form of IF-THEN rules

• One rule is created for each path from the root to a leaf

• Each attribute-value pair along a path forms a conjunction

• The leaf node holds the class prediction

• Rules are easier for humans to understand

• Example
IF age = “<=30” AND student = “no” THEN buys_computer = “no”

IF age = “<=30” AND student = “yes” THEN buys_computer = “yes”

IF age = “31…40” THEN buys_computer = “yes”

IF age = “>40” AND credit_rating = “excellent” THEN buys_computer = “yes”

IF age = “>40” AND credit_rating = “fair” THEN buys_computer = “no”

Bayesian Classification: Why?

• Probabilistic learning: Calculate explicit probabilities for
hypothesis, among the most practical approaches to certain types
of learning problems

• Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct.
Prior knowledge can be combined with observed data.

• Probabilistic prediction: Predict multiple hypotheses, weighted by
their probabilities

• Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision making
against which other methods can be measured

Play-tennis example: estimating P(xi|C)

Outlook Temperature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N

outlook

P(sunny|p) = 2/9 P(sunny|n) = 3/5

P(overcast|p) = 4/9 P(overcast|n) = 0

P(rain|p) = 3/9 P(rain|n) = 2/5

temperature

P(hot|p) = 2/9 P(hot|n) = 2/5

P(mild|p) = 4/9 P(mild|n) = 2/5

P(cool|p) = 3/9 P(cool|n) = 1/5

humidity

P(high|p) = 3/9 P(high|n) = 4/5

P(normal|p) = 6/9 P(normal|n) = 2/5

windy

P(true|p) = 3/9 P(true|n) = 3/5

P(false|p) = 6/9 P(false|n) = 2/5

P(p) = 9/14

P(n) = 5/14

2 classes – p (play),

 n (don’t play)

ASSIGNMENT

• KDD For Insurance Risk Assessment: A Case Study

Decision tree techniques to identify significant areas of risk within an
insurance portfolio.

The real world dataset used contains information about policies and
insurance claims on those policies.

Historical data is used to estimate parameters of the model

